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The differences between Wang and Liebau’s [Wang & Liebau

(2007). Acta Cryst. B63, 216–228] stoichiometric valence

(atomic valence) and structural valence (bond-valence sum)

observed in Sn2+ and other lone-pair cation oxycomplexes

arises from their use of the Brese & O’Keeffe bond-valence

parameters which are based on the assumption that the bond-

valence parameter b = 0.37 Å applies to all bond types.

According to the theory of the bond-valence model, the bond-

valence sum is necessarily equal to the ionic charge, implying

that in the Wang and Liebau model the ionic charges are equal

to the structural valence. If charges are chosen equal to the

stoichiometric valence, the bond-valence parameters for

Sn2+—O bonds are R0 = 1.859 Å, b = 0.55 Å. While both

models are theoretically valid, only the standard model relates

bond valences to the concept of atomic valence. Wang and

Liebau’s suggestion that cation–lone-pair bonds make a

significant contribution to the valence sums is confirmed, but

such bonds cannot account for the full difference between the

stoichiometric and structural valences because they are

present in only a few compounds.

Received 14 July 2009

Accepted 27 August 2009

1. Introduction

In a recent series of papers Wang and Liebau (Liebau &

Wang, 2005; Wang & Liebau, 1996, 2005, 2007, 2009; Liebau et

al., 2009) have pointed out that the bond-valence sum calcu-

lated around a lone-pair cation increases as the cation’s

environment becomes more distorted, i.e. as the lone pair

becomes more stereoactive (Fig. 1). They distinguish between

the traditional valence of an atom, which they call the stoi-

chiometric valence, and the sum of the experimental bond

valences, which they call the structural valence (Liebau &

Wang, 2005). In the present paper the terms ‘experimental

bond-valence sums’ and ‘structural valence’ are used inter-

changeably according to context. Liebau & Wang (2005)

propose that while the stoichiometric valence measures the

number of valence electrons formally involved in bonding, the

structural valence measures the actual number of electrons

physically associated with the bonds formed by the atom, a

number which, in general, is larger. Consequently, they infer

that cations with stereoactive lone pairs use more electrons in

bonding than those in which the lone pair is inactive. They

suggest (Wang & Liebau, 2007, 2009) that as the environment

of the cation becomes less symmetric, the non-bonding lone

pair of electrons is increasingly involved in the cohesion of the

structure. They give a number of qualitative examples that

support their hypothesis but they do not provide numerical

evidence that the value of the structural valences they

measure reproduces the number of additional electrons

quantitatively, possibly because of the difficulty of finding



alternative experimental or theoretical methods for deter-

mining what this number should be.

In this paper Wang and Liebau’s hypothesis is examined in

some detail, because it contradicts the basic assumption of the

bond-valence model, namely that the bond-valence sum is by

definition equal to the (stoichiometric) atomic valence (the

valence-sum rule). This definition is the basis of a number of

rigorous theorems, which are linked to experiment by the

empirical correlation between bond valence and the observed

bond length. This correlation is usually approximated by (2)

below with two fitted bond-valence parameters, R0 and b, as

described in x2.

In practice, bond-valence sums determined from observed

bond lengths using this correlation may deviate slightly as a

result of experimental uncertainty, and may deviate system-

atically in cases where steric constraints cause the bonds to be

stretched or compressed, but such deviations are well under-

stood and do not indicate the involvement of more or fewer

electrons in the bonds (Brown, 2002).

Wang and Liebau’s hypothesis, and the arguments used to

support it, challenge the basis on which the bond-valence

model has been developed. For this reason, in x2 the bond-

valence theory is derived to show that the bond-valence

parameters must be chosen to ensure that the valence-sum

rule is obeyed by bond valences calculated from bond lengths.

The Wang and Liebau model is distinguished from the stan-

dard model. In the standard bond-valence model the ionic

charges are chosen to be equal to the atomic valences and the

bond-valence parameters are then chosen to ensure that the

valence sum rule is obeyed. If this rule fails, at least some

aspects of the model also fail and it is essential to understand

the scope of this failure. Following the suggestion by Sidey

(2008) that the difference between the models arises from

Wang and Liebau’s adoption of bond-valence parameters in

which b is fixed at 0.37 Å, x3 describes my analysis of a

representative selection of well determined structures (the

training set) from the Sn2+ compounds studied by Wang and

Liebau. Using bond-valence parameters derived with a

procedure recently proposed by Sidey (2009b), all the

compounds in the training set are found to obey the valence-

sum rule within the limits of experimental uncertainty,

meaning that when the bond valence is determined using the

procedures of the standard model, there is no significant

difference between the stoichiometric and structural valence.

Wang & Liebau (2009) suggest that the effect they observe

may be the result of ignoring the unconventional bonds

formed between the counter-cations and the lone pairs.

Therefore, in x4 the four structures in the training set that

contain such bonds are examined and they show that while

they contribute to the bond-valence sum, these bonds are

unable to account for the full differences between the struc-

tural and stoichiometric valences observed by Wang & Liebau

(2007).

In x5 the Wang and Liebau model is compared with the

standard model and while both are mathematically valid

approaches, they suggest different chemical interpretations.

The large value of the bond-valence parameter b in the

standard model implies that the stereoactive behaviour is

associated with the lone-pair polarizability. The chemical

significance of the Wang and Liebau model is much less clear

and the interpretations they advance have a number of serious

problems.

2. Theory of the bond-valence model

This section provides a theoretical rationale for the bond-

valence model starting with the ionic model. It is noted that

the ionic model allows many choices of ionic charges;

however, in the standard bond-valence model the charges are

chosen to be equal to the traditional (stoichiometric) atomic

valences since these serve to link the bond-valence model to

the Lewis electron-pair model and thence to traditional

chemical concepts.

The ionic model, introduced early in the twentieth century,

was originally proposed as a description of chemical bonding,

i.e. one that leads to a successful explanation of inorganic
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Figure 1
Bond-valence sum (structural valence) versus eccentricity for the Wang
and Liebau model. Open circles are structures published before 1980,
filled circles structures published after 1980. Crosses are the structures
with G > 0.2. Broken lines represent the range of � 0.09 v.u.



structure, but the subsequent development of quantum

mechanics revealed the deficiencies of the ionic model as a

picture of chemical bonding since it takes no account of the

physical distribution of electron density that is responsible for

the cohesion between the atoms. However, the model has

proved to be remarkably successful in reproducing observed

chemical structures, since it is able to accurately predict the

arrangement of atoms in condensed phases. In the form of the

two-body potential model it is routinely used for simulating

the structures of complex crystalline and non-crystalline

materials. Why does such a model succeed in describing the

structure when it is based on such an implausible picture of

chemical bonding? Its success lies in the repulsive potential

that, for a given set of ionic charges, is chosen to ensure that

the ions in the ionic model adopt the same positions as the

atoms in the solid. These potentials are largely transferable

between the same ion pairs in different compounds, so once

the potentials are known, the geometries of new chemical

compounds can be predicted with confidence. Further, there is

nothing special about the charges used in the model; any set of

ionic charges can be assigned provided the appropriate

empirical repulsive potential is used. Setting the charges of the

standard model to be equal to the atomic valences is an

arbitrary choice which, however, links the model to traditional

chemical concepts.

While the traditional goal of the ionic model is to find the

arrangement of ions that minimizes the potential energy, the

bond-valence model focuses instead on the electrostatic field.

Ions carrying an electric charge arrange themselves with

cations surrounded by anions and vice versa according to the

principle of local charge neutrality (Pauling, 1929). It is an

elementary exercise to show that such an arrangement results

in Faraday field lines that link each cation with its first

neighbour anion shell, and vice versa. In this model a bond is

defined as existing between a cation and an anion if they are

linked by lines of field, i.e. by electrostatic flux, and the

strength of the bond is given by the corresponding number of

lines of field, i.e. by the magnitude of the electrostatic flux.

According to Gauss’ electrostatic theorem, the total electro-

static flux incident at an ion is equal to its charge. Therefore,

by setting the ionic charges equal to the atomic valence, the

fluxes represent the amount of valence carried by each bond,

hence they are called bond valences. The bond valences are

also the same as the number of resonant electron pairs

assigned to the bond in the Lewis model (cf. Boisen et al.,

1988). The sum of the bond valences around any ion is

therefore, by Gauss’ theorem, equal to the atomic valence, a

law known as the valence sum rule. This is the first and most

important of the various bond valence rules that are derived

from the electrostatic model. These rules can be used, for

example, to predict ideal bond valences if the topology of the

bond network is known (Brown, 2002).

In non-standard versions of the model, such as that

proposed by Wang and Liebau, the ionic charges are no longer

equal to the atomic valences, but they are still equal to the sum

of the bond fluxes, and if the fluxes (valences) are calculated

from the bond lengths, the ionic charges of the model are

equal to the bond-valence sum, i.e. the structural valence. The

significance of these charges depends on the way they are

chosen.

It is not surprising that when two ions are brought closer

together, the electrostatic flux between them, i.e. the valence

of the bond that links them, will increase. The correlation

between the bond valence, S, and the bond length, R, has been

well studied and is typically approximated using (1) or (2),

each with two empirically fitted bond-valence parameters, R0

and n, or R0 and b. However, these equations are only

approximations and there are cases, e.g. H—O bonds, where

they are only valid over limited ranges (Brown, 2002).

S ¼ ðR=R0Þ
�n

ð1Þ

S ¼ expððR0 � RÞ=bÞ ð2Þ

This correlation plays the same role in the bond-valence

model that the repulsive potential does in the traditional ionic

model. Like the repulsive potential it must be determined

empirically by comparing ideal bond valences with observed

bond lengths. The bond-valence parameters determined in this

way have proved robustly transferable between bonds of the

same type in different compounds. Naturally the bond-valence

parameters depend on the choice of ionic charges. For the

standard model a standard set of bond-valence parameters has

been determined by ensuring that bond valences determined

from bond lengths obey the valence-sum rule. Assigning ionic

charges that are not equal to the atomic valences requires a

different set of bond-valence parameters. Conversely, using a

different set of bond-valence parameters implies the adoption

of a different set of ionic charges.

Although it has been customary to determine b by trial and

error, and then fit R0 to ensure the valence-sum rule is obeyed

in a set of training structures, Sidey (2009b) has proposed a

more powerful method of determining both R0 and b simul-

taneously. He notes that (2) can be rewritten as (3).

RS ¼ R0 � b lnðSÞ; ð3Þ

where RS is a measured bond distance and is therefore known.

The bond valence S corresponding to this distance is usually

not known a priori, but in the special case of a cation envir-

onment where all the bonds have the same length, S should

equal V/N, where V is the ionic charge and N is the coordi-

nation number. A plot of RS against ln(V/N) should, if (3) is

valid, result in a straight line of slope �b and intercept R0. In

the case where the bond lengths are not all the same, the

average value of S is still V/N, but according to the distortion

theorem (Urusov, 2003), the value of the distance RS corre-

sponding to a valence of V/N is related to the average bond

length, hRi, by

RS ¼ hRi � �2=2bþ �3=3b2: ð4Þ

Here �2 is the mean-square deviation and �3 is the mean-cube

deviation, of the individual bond lengths from hRi, both of

which can be obtained from the observed bond lengths.

Equation (4) requires a knowledge of b, but even though this
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is not known a priori, it only appears in the two small

correction terms and an approximate value is sufficient.

There have been many determinations of the bond-valence

parameters for the standard model by traditional methods,

some of them systematic such as that by Brown & Wu (1976)

who determined R0 and n for 86 different bond types using (1),

and Brown & Altermatt (1985) and Brese & O’Keeffe (1991)

who did the same for R0 and b in (2). In most cases b (or n),

which determines the slope of the correlation curve, is difficult

to determine accurately, particularly if the observed bond

lengths cover only a small range. As b did not appear to vary

significantly between one bond type and another in their

training set, Brown & Altermatt (1985) simplified the calcu-

lation by using the single value, 0.37 Å, for all bond types.

Brese & O’Keeffe (1991) assumed, without testing, that this

value would apply to all other bond types and therefore

refined only R0 when preparing their more extensive list of

bond-valence parameters. This list contains the only para-

meters for Sn2+—O bonds that have been published, R0 =

1.984, b = 0.37 Å. The value of b has therefore been assumed

but never refined against a training set of Sn2+—O bonds and

there is no guarantee that its value is correct.

Experimental uncertainties cause the valence sums

obtained from observed bond lengths to deviate typically by

around 0.1 v.u. (valence units) for most well determined

structures. However, if an ion resides in a cavity that is

constrained to be too large or too small; the valence sums

obtained from the bond lengths will be significantly smaller or

larger than the ionic charge. A measure of the failure of the

valence-sum rule under these circumstances is the global

instability index, G, the r.m.s. difference between the atomic

valence and the bond-valence sums defined in

G ¼ �ið�jSij � ViÞ
2=M

� �1=2
: ð5Þ

The inner sum is over all the bonds ij around atom i and the

outer sum is taken over the M atoms, i, in the formula unit.

Steric strain, where bonds are compressed or stretched from

their ideal bond length, tends to destabilize the structure and

leads to larger values of G. Correctly determined structures

are rarely found with G greater than 0.2 v.u. (Brown, 2002). If

a larger value is found it can usually be attributed to the use of

inappropriate bond-valence parameters or an incorrect crystal

structure determination. In examining the causes for the

apparent failure of the valence-sum rule reported by Wang

and Liebau, it is important to eliminate these two possibilities

before claiming that the effect arises from a real but hitherto

unnoticed chemical cause.

3. Experimental procedure

This section reviews the work of Wang and Liebau and shows

that the bond-valence sums around Sn2+ are, as expected, all

equal to 2.0 v.u. within the limits of experimental uncertainty

when using bond-valence parameters fitted according to the

procedures of the standard model.

Wang & Liebau (2007) examined a large number of cation

environments of the form XYN, where X is a main group

element with a single lone pair, and Y is O2�, S2� or Se2�. In

each case all the ligands, Y, surrounding a given cation, X,

were the same chemical species. Wang and Liebau measured

the stereoactivity of the lone pair using an eccentricity para-

meter, �, which is the negative of the sum of vectors with a

magnitude of exp(�5R) directed along each bond. The

eccentricity function is zero if the cation is at the centre of its

coordination sphere, and it increases the further the cation is

displaced from this centre, i.e. the more the lone pair is

expressed. In Figs. 5–7 in their paper Wang & Liebau (2007)

show that for essentially all the 22 bond types they studied, the

bond-valence sums calculated with the bond-valence para-

meters of Brese & O’Keeffe (1991) increased linearly with

eccentricity.

Professors Wang and Liebau have been kind enough to

send me details of their training set of Sn2+—O environments.

I chose these bonds for a detailed study because they show a

particularly good correlation between the bond-valence sum

and the degree of distortion around the central ion. In

assembling this list of 52 Sn2+—O environments, Wang &

Liebau (2007) carefully screened each structure, rejecting all

structures with crystallographic agreement indices (R factors)

greater than 0.075 or which failed to meet a number of other

criteria. This list still contained some problem structure

determinations so I further filtered it by looking at the value of

G [see (5)] calculated with the Brese & O’Keeffe (1991) bond-

valence parameters used by Wang and Liebau. The purpose of

this filter was to draw attention to any problem structure

determinations, specifically those with G > 0.2 v.u. Since the

positions of all atoms must be known in order to calculate G,

19 compounds with missing H-atom coordinates had to be

dropped from the list. Six of the remaining structures had G

greater than 0.20 v.u. and in all these cases G was greater than

0.30 v.u. suggesting an error in the structure determination or

in its interpretation. Two of these structures (SnSO4;

Donaldson & Puxley, 1972, and an early determination of

K2Sn2O3; Braun, 1978) were clearly poor or problematic and

were removed from the list. The other four had plausible

structures with large eccentricity parameters, and therefore

large deviations between the structural and stoichiometric

valences around Sn2+ which might possibly account for the

large value of G. However, there were two other structures

with equally large eccentricity parameters but with G <

0.2 v.u., showing that a large difference between the stoi-

chiometric valence and bond-valence sum around Sn2+ is not

in itself sufficient to prevent the structure passing the G filter.

These four structures were included in the study, but

together with two other structures with large eccentricity

factors, they were subject to a detailed analysis, reported in x4,

showing that the large value of G arises from the neglect of

bonds between a counter-cation and the lone pair. The

remaining 13 structures listed in Table 1 all passed the G filter.

They include 23 Sn2+ environments with eccentricity para-

meters lying between 2.5 and 6.4 � 10�5. In the figures these

compounds are shown as circles, while the four compounds
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discussed in x4 that did not pass the G filter are shown as

crosses.

Fig. 1 plots the structural valence (i.e. the bond-valence

sums) calculated around the Sn2+ ions with the Brese &

O’Keeffe (1991) parameters as a function of the eccentricity

parameter. It reproduces Wang and Liebau’s results and

confirms their assertion that the valence sum calculated in this

way increases significantly with eccentricity. Fig. 1 rules out the

possibility that this correlation is a consequence of the inclu-

sion of a number of poorly determined structures in the

original sample, but it is significant that the four structures

shown by crosses all have structural valences around Sn2+ that

lie well above the correlation line that goes through the other

points.

Having shown that Wang and Liebau’s observations cannot

be explained by incorrect structure determinations, the next

step was to examine the bond-valence parameters they used.

The only values published for Sn2+—O bonds are those of

Brese & O’Keeffe (1991) which are based on the assumption

that the bond-valence parameter, b, is universally equal to

0.37 Å. R0 and b are not chosen with any particular physical

model in mind, and the only criterion for assigning their value

is that the ideal and experimental bond valences should be the

same. There is no theoretical reason for believing either

parameter should be the same for all bond types, and the

notion that a single fixed value for b can be used for all bond

types within the standard model has been challenged. Adams

(2001) pointed out that b depends on how many bonds are

included in the bond-valence sum, with b increasing as the

distances to the second coordination sphere are added. He

also showed that b is related to the difference in the softness of

the terminal ions, being close to 0.37 Å for bonds between ions

of similar softness, but rising to 0.50 Å and higher for bonds

whose terminal ions differ in softness. Others have confirmed

this observation, particularly for bonds formed by ions with

lone pairs, e.g. Krivovichev & Brown (2001) found b = 0.49 Å

for Pb2+—O bonds, and Locock & Burns (2004) found b =

0.50 Å for Tl+—O bonds. Sidey (2009a) calculated values of b

between 0.44 and 0.50 Å for bonds between O2� and Sn2+,

Sb3+, Te4+ and I5+ from the values of n given by Brown & Wu

(1976). In particular, the parameters he gives for Sn2+—O

bonds are R0 = 1.849; b = 0.50 Å. According to Adams’ (2001)

observations, these larger values of b are consistent with the

lone-pair cation being relatively soft or polarizable. In other

words lone-pair cations have a number of states with closely

spaced energies each of which can be stabilized by a different

environment. The presence of strongly bonding ligands results

in stronger, and therefore fewer, bonds, leaving space in the

coordination shell for a stereoactive lone pair. The presence of

weakly bonding ligands results in a larger number of weaker

bonds which forces the lone pair into the center of the ion.

Fig. 2 shows a Sidey plot [see (3)] of RS against ln(V/N) for

the Sn2+—O bonds in the training set with the values of RS

corrected according to (4). In many cases, particularly for the

three-coordinate atoms, the corrections are negligible, but in

other cases corrections up to 0.15 Å had to be applied to the
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Table 1
Summary of calculations on the training set.

� = eccentricity � 105; CN = coordination number, S = bond-valence sum
around Sn, G = global instability index, WL = Wang & Liebau model, SM =
standard model, ICSD = Inorganic Crystal Structure Database number.

� CN S(WL) S(SM) G(WL) G(SM) ICSD

Na2Sn(C2O4) 2.5 6 1.88 2.10 0.15 0.14 388
Sn2(S2O4)2 2.5 4 1.87 1.91 0.14 0.13 32684
SnWO4 2.9 6 2.03 2.21 0.02 0.11 2147
SnHPO4 2.9 5 1.79 1.94 0.13 0.11 658
�-SnWO4 3.0 6 1.93 2.10 0.17 0.15 2840
Sn3(PO4)2 4.5 5 2.08 2.13 0.11 0.07 966

4.8 3 2.20 1.94 966
3.0 6 1.74 1.99 966

SnO 3.1 4 2.09 2.06 0.09 0.06 16481
Sn2OSO4 3.0 5 1.79 1.93 0.14 0.09 35101

3.2 5 1.88 1.98 35101
Sn4(PO4)2(C2O4) 4.6 4 2.01 1.95 0.19 0.15 50969

3.6 5 1.87 1.98 50969
SnNb2O6 3.0 4 1.80 1.84 0.11 0.10 202827
NH4Sn4P2O12 † 4 2.25 2.07 0.13 0.09 90843

4.9 3 2.19 1.93 90843
Na4Sn4O(OH)10 6.4 3 2.46 2.09 0.20 0.11 35420

5.3 3 2.26 1.98 35420
5.8 3 2.37 2.04 35420
† 3 2.38 2.04 35420

Na2Sn2O(OH)4 5.9 3 2.35 2.03 0.17 0.10 35421
5.3 3 2.26 1.97 35421
5.3 3 2.22 1.95 35421
5.5 3 2.32 2.01 35421

K2Sn2O3 6.2 3 2.67 2.11 0.20‡ 0.28 15511
Rb2Sn2O3 5.7 3 2.59 2.11 0.21‡ 0.20 24816
Na4SnO3 5.9 3 2.73 1.98 0.10‡ 0.15 49624
K4SnO3 4.9 3 2.53 2.01 0.15‡ 0.30 79101

ICSD codes: 388: Donaldson et al. (1976); 658: Schroeder & Prince (1976); 966: Mathew et
al. (1977); 2147: Jeitschko & Sleight (1974); 2840: Jeitschko & Sleight (1972); 15511:
Braun & Hoppe (1981); 16481: Pannetier & Denes (1980); 24816: Braun & Hoppe (1982);
32684: Magnusson & Johansson (1982); 35101: Lundren et al. (1982); 35420, 35421: von
Schnering et al. (1983); 49624: Nowitzki & Hoppe (1984); 50969: Natarajan (1998); 79101:
Röhr (1995); 90843: Ayyappan et al. (2000); 202827: Ercit & Cerny (1988). † Not
available ‡ After correction for the cation–lone-pair bonds. Before correction these
values are 0.33, 0.38, 0.32 and 0.31 v.u.

Figure 2
Sidey plot of Sn2+—O bonds showing the corrected average bond length
RS versus ln(V/N). The value of the coordination number, N, is also shown
above the horizontal axis. The solid line is a fit with slope 0.55 Å, the
broken line represents the bond-valence parameters of Brese & O’Keeffe
(1991) with slope 0.37 Å. Conventions otherwise as in Fig. 1.



average bond length. The best-fit line shown on the graph has

a slope of b = 0.55 Å and an intercept of R0 = 1.859 Å, values

close to those quoted above by Sidey (2009a). For comparison

the line corresponding to the Brese and O’Keeffe parameters

is shown as a dotted line. The bond-valence parameters can

also be determined analytically from differences in the

average values of RS for different coordination numbers. The

four compounds that failed the G test, shown with crosses,

were not used to determine the bond-valence parameters

since their valence sums need to be adjusted for the bonds

formed by the lone pair, as discussed in x4.

Fig. 3 shows the bond-valence sums calculated using the

bond-valence parameters determined from the Sidey plot (Fig.

2). The filled points represent the structures determined since

1980 when the introduction of X-ray diffractometers and

computers resulted in improved accuracy. Most of these points

lie within 0.06 v.u. of the expected value of 2.0 v.u. (broken

lines). Those that lie outside these limits include the four

structures discussed in x4 below (crosses) and many of the

structures determined before in 1980 (open circles). For these

early determinations the estimated standard deviation of the

difference between the stoichiometric valence and the valence

sums around Sn2+ is 0.11 v.u., which can be compared with a

value of 0.06 v.u. for the post-1980 structures. The corre-

sponding average values of G are 0.11 and 0.09 v.u. The

valence sums around Sn2+ in the Wang and Liebau and the

standard models, as well as the values of G for all the

compounds in the training set, are listed in Table 1.

The outliers in Figs. 1 and 3 were examined for indications

of steric strain, but none of the structures shown by circles

displayed the characteristic strain signature in which some

cations have valence sums that are too large (compression),

while others have valence sums that are too small (tension).

The structures indicated with crosses do show this signature,

but for a different reason as explained in the next section.

4. Alkali-rich compounds

This section examines in more detail the four structures that

failed the G test (shown by crosses in the figures) and show

that the discrepancy is the result of ignoring bonds between

the alkali metal cations and the lone pairs.

In recent papers Wang & Liebau (2007, 2009) suggest that

lone pairs might be directly involved in the bonding, thus

accounting for at least some of the increase in the structural

valence relative to the stoichiometric valence in cases where

the lone pair is stereoactive. They examined eight alkali-rich

salts of lone-pair cations, one of which, Na4SnO3, contains

Sn2+. These structures all have stereoactive lone pairs (i.e. high

eccentricity parameters) and lone-pair cations with structural

valences that are considerably larger than their stoichiometric

valence. Wang and Liebau illustrate Na4SnO3, showing that it

contains short distances between the lone pair and nearby Na+

cations, the lone pair acting in this case as an anion. They

propose that a short Na+–lone-pair distance should be

considered an acid–base bond, i.e. that although the stoi-

chiometric valence around Sn2+ is 2.0, the structural valence is

larger because some of the electrons of the lone pair become

involved in bonding.

Wang and Liebau point out that the bond-valence model

already has a mechanism for interpreting cation–lone-pair

bonds. This mechanism can be described in two different but

equivalent ways. In the first description, that used by Wang

and Liebau, the lone pair is treated as a divalent anion,

conveniently labelled Lp2�, with the remainder of the Sn ion

assigned a valence of +4. If the fictitious Lp2� anion is not

involved in external bonding, it forms a bond of 2.0 v.u. with

the Sn4+ ion. The presence of an Na+—Lp2� bond of, say,

0.1 v.u. would reduce the valence of the Sn4+—Lp2� bond to

1.9 v.u. requiring that the sum of the Sn4+—O2� bond valences

compensate by increasing from 2.0 to 2.1 v.u. This would

explain why, if one ignores the contributions of the Na+—Lp2�

bonds, the structural valence of Sn2+ appears to be too large

and that of Na+ too low.

The alternative description is to regard Sn as part cation

with a valence of 2þ x and part anion with a valence of �x,

giving a net valence (charge) of +2. The valence of any bonds

formed by the anion component, i.e. the lone pair, would be

subtracted from the bond-valence sum calculated for the

bonds formed by the cation component, i.e. Sn2+. The two

descriptions are equivalent, and in either case the sum of the

valences of the cation–Lp bonds must be equal to both the

deficit in the valence sums at the cations (e.g. Na+) and the

excess of the valence sums at Sn2+. The following shows that
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Figure 3
Bond-valence sum versus eccentricity for the standard model. Conven-
tions the same as Fig. 1. The broken lines represent the range of
� 0.06 v.u.



while cation–Lp bonds are real and need to be included in the

calculation of the bond-valence sums in order to account for

the excess valence shown by the crosses in Fig. 3, there are

problems in expecting it to account for the much larger

difference between the structural and stoichiometric valences

shown for all the structures in Fig. 1.

In order to take the Na+–Lp2� bonds into account, it is first

necessary to assign bond valences to them, but no procedure

for this has yet been published, and the assignment depends

on whether one is trying to account for the large excess

valence of the Wang and Liebau model or the much smaller

excess of the standard model. There are only six structures in

the training set that have eccentricity factors greater than

4.9 � 10�5 and these are all alkali-metal-rich as indicated by

the ratios given in column 2 of Table 2. The large Na:Sn ratio

in these compounds results in the presence of a lower anion-

to-cation ratio, leading to low cation coordination numbers.

By forming bonds to the lone pair the cations can increase

their coordination numbers, and this in turn tends to

increase the lone-pair stereoactivity.

A full analysis of the structures of Na4SnO3 has

been included in Table 3 and K4SnO3 in Table 4. The

second column in these tables shows the bond-

valence sums calculated using the Brese and

O’Keeffe parameters, confirming the observations of

Wang and Liebau that the structural valence around

Sn2+ is larger than the stoichiometric valence, while

the opposite is true around the alkali metals. The

bond-valence sums around O2� are close to the

stoichiometric valence. The third column gives the

bond-valence sums calculated using the standard

model Sn2+—O2� parameters determined in x3. In

this model the valence sums around Sn2+ are smaller,

although still larger than expected, and consequently

the sums around O2� are now too small. The G

factors are not noticeably improved and in both

compounds G is larger than the normal stability limit

of 0.2 v.u.

The valence of cation–lone-pair bonds will

contribute to increasing the bond-valence sum

around the alkali metal and decreasing it around

Sn2+, but in order to estimate this contribution, it is

first necessary to estimate their length which

requires first estimating the position of the lone pair,

and then assigning a bond valence. However,

without any guidelines to work from, the best that

can be done is to find a consistent set of bond

valences that correlates with the notional bond

lengths and at the same time accounts for the excess

bond valence at Sn2+ and deficit at Na+ and K+.

The hypothetical Sn—Lp bond is expected to

have a length of around 1 Å (Galy et al., 1975), so

any Sn—Na distance pointing directly along the

Sn—Lp axis should be reduced by this amount in

order to estimate its contribution to the bond-

valence sum. Columns A, D and E in Table 5 show

the distances between the Sn2+ nucleus and the

nearest alkali metals in all four of the alkali-rich crystals that

failed the G test. In all these compounds, there are several

alkali metals at distances between 3.3 and 4.0 Å from Sn2+, but

only those in column A are near the lone pair. For these the

cation-Lp distances (shown in parentheses) have been

approximated by subtracting 0.7 Å from the cation–Sn

distances, recognizing that these bonds do not, in general,

point directly down the lone-pair axis.

In Na4SnO3, Na1+ forms two bonds to O2� anions and two

to Lp2� pseudo-anions, the four bonds pointing to the corners

of a tetrahedron. Similarly Na4+ is bonded to three O2�

neighbours and one Lp2�, again at the corners of a tetra-

hedron. These are shown in column A of Table 5. In addition

to the three Sn—Na distances that are correctly oriented to

form bonds with the lone pair, there are a further nine Na+

contacts lying at distances between 3.1 and 3.6 Å, six in the

plane perpendicular to the pseudo-threefold axis that runs

through Sn and the lone pair (Table 5, column D) with the
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Table 2
Number of lone-pair electrons involved in bonding and the global instability index,
G, after correcting for cation–Lp bonds according to the Wang and Liebau and
standard models.

Column 2: Na:Sn ratio; column 3: eccentricty factor, � (� 105); column 4: total cation–Lp
bond valence for the Wang and Liebau model; column 5: total cation–Lp bond valence for
the standard model; column 6: G for the Wang and Liebau model; column 7: G for the
standard model; column 8: ICSD references (see Table 1).

Lone pair G

Na:Sn � WL Standard WL Standard ICSD

Na4SnO3 4.0 5.9 0.62 0.26 0.10 0.15 49624
K4SnO3 4.0 4.9 0.53 0.12 0.17 0.30 79101
K2Sn2O3 1.0 6.2 0.55 0.10 0.20 0.15 15511
Rb2Sn2O3 1.0 5.7 0.44 0.06 0.21 0.13 24816
Na4Sn4O(OH)10 1.0 5.3–6.4 0.00† 0.00† 0.20 0.11 35420
Na2Sn2O(OH)4 1.0 5.3–5.9 0.00† 0.00† 0.17 0.10 35421

† No Na—Lp bonds occur in these compounds.

Table 3
Bond-valence sums for Na4SnO3.

All values in v.u.; bond-valence parameters in Å. The values in parentheses are the sums of
all the Na—Lp bond valences.

WL model Standard model Including Na—Lp bonds

R0 b R0 b WL model Standard model

Sn—O 1.984 0.37 1.859 0.55
Na—O 1.803 0.37 1.803 0.37

Sn 2.73 2.24 2.11 (0.62) 1.98 (0.26)
Na1 0.53 0.54 1.00 0.73
Na2 0.85† 0.78† 0.85 0.78
Na3 0.86 0.87 0.86 0.87
Na4 0.85 0.86 1.00 0.94
O1 1.98 1.84 1.98 1.84
O2 1.86 1.70 1.86 1.70
O3 1.99 1.74 1.99 1.74
G 0.32 0.26 0.10 0.15

† The values in column 2 were taken from Wang & Liebau’s (2009) paper, the values in column 3 were
recalculated for this paper which accounts for the differences in the sums around Na+ which should be
the same.



remaining three lying between the three O2� ligands on the

opposite side to the lone pair (Table 5, column E). The cations

with distances marked with a dagger are linked to Sn2+

through two O2� anions which accounts for their proximity to

Sn2+. Although these nine Na+ ions are as close to Sn2+ as the

three Lp-bonded Na+ ions, they are further from the lone pair

and so cannot be considered as bonding within the hypothesis

being tested. The situation in all four compounds is

similar.

If the cation–Lp bonds are to account for the whole

difference between Wang and Liebau’s structural and stoi-

chiometric valences, the Na+—Lp2� bonds must be assigned

the valences shown in column B of Table 5. These have been

chosen to reflect the relative lengths of the cation–Lp bonds

and to ensure that after the correction has been applied the

cation and Sn2+ bond valences are approximately equal to

their stoichiometric valence. Column C of Table 5 shows the

much smaller corrections needed in the standard model.

These corrections are only able to improve the valence sums

around Na1+ and Na4+ in Table 3 and K1+ and K4+ in Table 4;

they cannot change the bond-valence sums around Na2+ and

Na3+ (or K2+ and K3+) since these cations do not form bonds

to the lone pair. In Tables 3 and 4, the second column shows

the bond-valence sums calculated with the Brese and

O’Keeffe parameters (Wang and Liebau’s structural valence).

The third column shows the bond valences calculated using

the standard model. The fourth column shows the Wang and

Liebau model with a cation-Lp correction designed to remove

the difference between the structural and stoichiometric

valence, while the fifth column shows the similar correction for

the standard model. The values in parentheses represent the

total contribution of the cation–Lp bonds.

These compounds are unusually rich in alkali metal cations.

As such they are highly moisture sensitive and require special

handling (Nowitzki & Hoppe, 1984). It is therefore hardly

surprising that their structures show unusual features. If the

three O2� ions each form six bonds, this still leaves fewer than

four bonds available for each Na+ ion, a situation which

encourages the formation of cation–lone-pair bonds. Even

after correction for these unconventional bonds, the bond-

valence sums around O2� and Na+ are still too low, possibly

because, with so few O2� ions, the alkali metal cations are in

sufficiently close contact that their mutual repulsion becomes

significant.

The results of making corrections for the cation–Lp bonds

in all the six high-eccentricity compounds of the training set

are summarized in Table 2. The last two compounds in this

table, with a total of eight Sn2+ ions between them, contain no

cation–lone-pair bonds. All six compounds shown in Table 2

are alkali-rich (column 2) and have large eccentricities

(column 3). The sums of the valences of the cation–Lp bonds

applied in this correction are shown in columns 4 and 5 for the

Wang and Liebau, and standard models, while columns 6 and 7

show the corresponding G indices after the corrections have

been made. With the exception of K4SnO3, these have values

that one might expect for compounds that are highly moisture-

sensitive and hence near the limit of stability.

This examination shows that the alkali-metal–lone-pair

bonds do make an important contribution to the bond-valence

sum and could, where they occur, account for the difference

between the stoichiometric and structural valences. However,

in order to do this the alkali-metal–lone-pair bonds would

have to be stronger than most other bonds formed by the

alkali metal, and this mechanism cannot account for the

differences found in the majority of compounds, those that

have no such bonds. The smaller corrections of the standard

model appear to give a better description of the valence of

these unconventional bonds.
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Table 5
Alkali metal—Sn2+ distances (Å) in alkali-rich crystals together with
estimated bond valences using the present model and Wang and Liebau’s
model (these values are used in Tables 3 and 4).

A: cation–Sn distances in the direction of the lone pair (approximate cation–
Lp distance); B: estimated bond valence to match the Wang and Liebau model;
C: estimated bond valence to match the standard model; D: equatorial cation–
Sn distances; E: distances opposite to the direction of the lone pair. For ICSD
references see Table 1.

A (Å) B (v.u.) C (v.u.) D (Å) E (Å) ICSD

Na4SnO3

Na1 3.32 (2.6) 0.27 0.12 3.42 3.32† 49624
Na1 3.43 (2.7) 0.20 0.09 3.43 3.11†
Na4 3.63 (2.9) 0.15 0.05 3.52 3.25†

3.53
3.58
3.38

K4SnO3

K1 3.77 (3.1) 0.27 0.06 3.51 3.69† 79101
K4 3.85 (3.2) 0.20 0.07 3.62 3.49†

3.56 3.52†
3.39
3.37

K2Sn2O3

K1 3.72 (3.0) 0.53 0.10 3.62x3† 3.44 15511
Rb2Sn2O3

Rb1 4.00 (3.3) 0.44 0.06 3.66x3† 3.55 24816

† Bridges to Sn2+ through two O ions.

Table 4
Bond-valence sums for K4SnO3.

All values in v.u.; bond-valence parameters in Å. The values in parentheses are
the sums of all the K—Lp bond valences.

WL model Standard model Including K—Lp bonds

R0 b R0 b WL model Standard model

Sn—O 1.984 0.37 1.859 0.55
K—O 2.132 0.37 2.132 0.37

Sn 2.53 2.13 2.00 (0.53) 2.01 (0.12)
K1 0.53 0.53 0.80 0.59
K2 0.84 0.84 0.84 0.84
K3 0.84 0.76 0.84 0.76
K4 0.71 0.71 0.91 0.79
O1 1.71 1.49 1.71 1.49
O2 1.94 1.80 1.94 1.80
O3 1.80 1.67 1.80 1.67
G 0.29 0.32 0.17 0.30



5. Discussion

Both Wang and Liebau’s model, and the standard model agree

that cations with lone pairs require a different treatment from

most other cations, but they differ in the way in which this is

expressed. The standard model assigns ionic charges equal to

the traditional atomic valence and requires that the para-

meters that express the bond-valence–bond-length correlation

be chosen to ensure that the experimental bond-valence sums

are equal to the traditional, i.e. stoichiometric, atomic valence

within the limits of experimental uncertainty. The conse-

quence of this is that, while the bond valence parameter b for

many bond types is equal to 0.37 Å, there is growing evidence

that larger values are needed for cations with lone-electron

pairs, specifically 0.55 Å for Sn2+—O bonds.

On the other hand, by choosing to use the bond-valence

parameters of Brese & O’Keeffe (1991), Wang and Liebau

implicitly assume that the value of b is equal to 0.37 Å for all

the bond types studied, regardless of the fact that this value

has never been refined against observed Sn2+—O bond

lengths. For many bond types the stoichiometric and structural

valences are the same when calculated with b equal to 0.37 Å,

but for cations with lone-electron pairs they are not.

According to the theory developed in x2, the charges on the

ions are equal to the bond-valence sums, i.e. the ionic charges

in the Wang and Liebau model are equal to the structural

valence rather than the stoichiometric valences assumed in the

standard model. For lone-pair cations therefore the Wang and

Liebau model implicitly assumes ionic charges that are not

related to the traditional atomic valences. The question then is

how is one to interpret these two models in chemical terms.

In the standard model the ionic charges are fixed a priori to

the number of valence electrons that the atom has available

for bonding, thus tying the model to traditional chemical

concepts. The bond valence itself can be identified with the

Lewis bond order. While the value of the bond-valence

parameter b, like that of R0, must then be fitted, it is found to

be transferable between all bonds of the same type (bonds

having the same terminal ions) in stable compounds regardless

of where the bonds are found or how distorted the environ-

ment. (For less stable compounds, such as those discussed in x4

and reported in Tables 3 and 4, the strains responsible for the

instability can lead to significant deviations which are beyond

the scope of this paper.) The value of b is associated with the

softness or polarizability of the ion, large values of b indicating

that one of the ions forming the bond is deformable, in this

case the cation with the lone-electron pair.

The meaning of the Wang and Liebau model is less clear.

According to the analysis given in x2 above, the ionic charges

implicitly adopted in this model are equal to the structural

valence, but they cannot be assigned a priori because they

depend on the eccentricity of the Sn2+ environment. They can

only be used for e.g. structure prediction if the eccentricity,

which depends on the other atoms in the compound, can also

be predicted a priori.

Liebau et al. (2009) have recently published a paper to give

some context to the concept of structural valence. An

apparent simplifying feature of their model is the use of the

Brese & O’Keeffe (1991) bond-valence parameters which are

based on the assumption that b can be set to 0.37 Å for all

bonds, so that only R0 needs to be determined. However,

fitting R0 is not as simple in this model as it is in the standard

model. Liebau et al. (2009) point out that the value of R0, as

well as the structural valence, depends on the eccentricity [see

(4), (5) and (6) in their paper]. However, the variation of the

structural valence with eccentricity can only be determined if

the value of R0 is held fixed, or alternatively, the variation of

R0 with eccentricity can only be determined if the structural

valence is held fixed. One must first decide which of these two

quantities to fix, otherwise there is no unique solution to the

way the other quantity varies with eccentricity. Assuming that

one decides to fix R0, a new problem arises. The role of R0 is to

scale the bond valence which requires that the value of the

structural valence be arbitrarily chosen for some particular

value of the eccentricity. There are various possibilities. Wang

& Liebau (2005) suggest that one should set the structural

valence equal to the stoichiometric valence when the eccen-

tricity is zero, that is when the coordination polyhedron is

undistorted. This choice makes sense if one assumes that the

structural valence measures the excess electrons involved in

bonding as a result of the stereoactivity of the lone pair.

However, in their calculations Wang and Liebau have

consistently used the Brese and O’Keeffe value of R0 in which

the stoichiometric and structural valences are implicitly

chosen to be equal in the middle of the observed eccentricity

range (3.5 � 10�5). This latter choice means that for the more

regular Sn2+ coordination spheres the structural valence is less

than 2.0, implying that in these cases some of the stoichio-

metric valence electrons are not involved in bonding. The

choice of R0 is not trivial. In the present study the two choices

described above lead to structural valence scales that differ by

almost 0.5 v.u. leading to very different estimates of the

number of electrons that each atom uses in bonding.

Liebau et al. (2009) also point out that stoichiometric

valences are integers, while structural valences in general are

not. They draw attention to many other examples of non-

integral valences determined by a variety of experimental and

theoretical methods, but they do not discuss how these

valences are defined, nor do they show that any of these other

scales reproduce their own structural valences, leaving open

to question the meaning and usefulness of the con-

cept.

In the same paper they suggest that the stereoactivity of the

lone pair can be thought of as related to the process of

oxidation in which the lone pair is gradually removed from the

Sn2+ ion to yield Sn4+ together with two electrons which can be

used to convert molecular oxygen to O2�, but even the most

strongly distorted Sn2+ complexes show no indications of

oxidation.

The large Sn—O valences enhance the structural valence of

the O2� anions as well as the Sn2+ cations but the extra

bonding electrons that this implies cannot come from the lone

pair which becomes further removed from either the anions or

the Sn—O bonds as the eccentricity increases.
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These contradictions need to be resolved before a clear

interpretation of the Wang and Liebau model is possible. The

role of the extra electrons in bonding needs to be delineated

so that a numerical comparison can be made between the

structural valence and alternative methods of calculating or

measuring the same quantity. If this can be done, it will be

possible to determine the correct value of R0 and provide the

model with a more secure interpretation.

Wang & Liebau (2009) have identified the existence of

unconventional bonds between the cations and the lone

electron pairs of Sn2+ cations, and the present analysis

provides quantitative evidence that the valences of such bonds

should be included in the bond-valence sums. As these bonds

are only found in a small number of relatively unstable

compounds, they are likely to be weak. However their

contribution is important even though it is not large enough to

account for most of the difference between the structural and

stoichiometric valences.

According to the standard model, the property that char-

acterizes the stereochemistry of the lone-pair ions is their

polarizability. If this is the correct physical explanation, the

structural valence of the Wang and Liebau model could be

understood as a measure of the polarization of the electrons in

the lone pair, the wide range of structural valences reflecting

the wide range of observed polarizations.

Different models of the same phenomenon can coexist if

they provide complementary insights; for example, structure

simulations using density-functional theory and simulations

using the ionic model lead to the same structures but interpret

them differently. The choice of which of two competing but

equally successful models to use is largely a personal prefer-

ence. The same is true of the two models discussed here, but

whichever model one chooses to use in a particular applica-

tion, it is important to understand the assumptions and

concepts that underlie both models as well as their internal

and external contradictions, so as to avoid misunderstandings

that can lead to unnecessary confusion.

It is a pleasure to acknowledge the honour done to me by

Professors Wang and Liebau for dedicating their 2007 paper in

part to me, and also to thank them for kindly providing me

with the details of their calculations for Sn2+—O bonds.

Subsequent discussions have done much to stimulate the

development of the ideas presented in this paper.
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